Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Psychoneuroendocrinology ; 163: 106981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335827

RESUMO

INTRODUCTION: Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS: In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS: Higher plasma tryptophan concentrations were associated with lower depression scores (ß as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION: We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Depressão , Biomarcadores , Ácido Cinurênico , Ansiedade
2.
Nat Commun ; 14(1): 8338, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097593

RESUMO

Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.


Assuntos
Proteínas de Caenorhabditis elegans , Cinurenina , Animais , Masculino , Feminino , Camundongos , Cinurenina/metabolismo , Triptofano/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Longevidade/genética , Camundongos Knockout , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
Zh Nevrol Psikhiatr Im S S Korsakova ; 122(12): 138-142, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36537644

RESUMO

OBJECTIVE: To develop a method for determining cinnabarinic acid (CA) and its immediate precursor 3-hydroxyanthranylic acid (3HAA) in blood plasma and to study their concentrations in patients with schizophrenia before and after treatment. MATERIAL AND METHODS: The study was carried out on a sample of 23 female patients with an attack-like progredient schizophrenia (F20.01). The levels of CA and 3HAA in blood plasma were measured using liquid chromatography with tandem mass spectrometry. RESULTS: We found an inverse statistically significant correlation of the sum of CA and 3HAA concentrations before treatment with the total PANSS score after treatment (R=-0.50; p<0.05). There was also an inverse correlation of the CA concentration of before treatment with the total PANSS score after treatment (R=-0.41, p=0.052), statistically significant at the trend level (0.05

Assuntos
Ácido 3-Hidroxiantranílico , Esquizofrenia , Humanos , Feminino , Prognóstico , Oxazinas , Cinurenina
4.
Front Immunol ; 13: 997240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263032

RESUMO

Background: Tryptophan (TRP) is an essential amino acid that must be provided in the diet. The kynurenine pathway (KP) is the main route of TRP catabolism into nicotinamide adenosine dinucleotide (NAD+), and metabolites of this pathway may have protective or degenerative effects on the nervous system. Thus, the KP may be involved in neurodegenerative diseases. Objectives: The purpose of this systematic review and meta-analysis is to assess the changes in KP metabolites such as TRP, kynurenine (KYN), kynurenic acid (KYNA), Anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 5-Hydroxyindoleacetic acid (5-HIAA), and 3-Hydroxyanthranilic acid (3-HANA) in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) patients compared to the control group. Methods: We conducted a literature search using PubMed/Medline, Scopus, Google Scholar, Web of Science, and EMBASE electronic databases to find articles published up to 2022. Studies measuring TRP, KYN, KYNA, AA, 3-HK, 5-HIAA, 3-HANA in AD, PD, or HD patients and controls were identified. Standardized mean differences (SMDs) were used to determine the differences in the levels of the KP metabolites between the two groups. Results: A total of 30 studies compromising 689 patients and 774 controls were included in our meta-analysis. Our results showed that the blood levels of TRP was significantly lower in the AD (SMD=-0.68, 95% CI=-0.97 to -0.40, p=0.000, I2 = 41.8%, k=8, n=382), PD (SMD=-0.77, 95% CI=-1.24 to -0.30, p=0.001, I2 = 74.9%, k=4, n=352), and HD (SMD=-0.90, 95% CI=-1.71 to -0.10, p=0.028, I2 = 91.0%, k=5, n=369) patients compared to the controls. Moreover, the CSF levels of 3-HK in AD patients (p=0.020) and the blood levels of KYN in HD patients (p=0.020) were lower compared with controls. Conclusion: Overall, the findings of this meta-analysis support the hypothesis that the alterations in the KP may be involved in the pathogenesis of AD, PD, and HD. However, additional research is needed to show whether other KP metabolites also vary in AD, PD, and HD patients. So, the metabolites of KP can be used for better diagnosing these diseases.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doença de Parkinson , Humanos , Cinurenina/metabolismo , Ácido Cinurênico/metabolismo , Triptofano/metabolismo , Ácido Hidroxi-Indolacético , Ácido 3-Hidroxiantranílico , NAD , Adenosina , Niacinamida
5.
EBioMedicine ; 84: 104280, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36174397

RESUMO

BACKGROUND: Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. METHODS: A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3-3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3-3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1-2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8-2.5 yrs). FINDINGS: There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). INTERPRETATION: This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. FUNDING: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.


Assuntos
Epilepsia , Ácido Cinurênico , Ácido 3-Hidroxiantranílico , Corticosteroides , Animais , Biomarcadores , Cromatografia Líquida , Epilepsia/tratamento farmacológico , Ácido Cinurênico/líquido cefalorraquidiano , Cinurenina/líquido cefalorraquidiano , Masculino , Ácido Quinolínico/líquido cefalorraquidiano , Espasmo , Espectrometria de Massas em Tandem , Triptofano/metabolismo
6.
PLoS One ; 17(8): e0266730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972924

RESUMO

OBJECTIVE: To prospectively establish an early diagnosis model of acute colon cancerous bowel obstruction by applying nuclear magnetic resonance hydrogen spectroscopy(1H NMR) technology based metabolomics methods, combined with machine learning. METHODS: In this study, serum samples of 71 patients with acute bowel obstruction requiring emergency surgery who were admitted to the Emergency Department of Sichuan Provincial People's Hospital from December 2018 to November 2020 were collected within 2 hours after admission, and NMR spectroscopy data was taken after pretreatment. After postoperative pathological confirmation, they were divided into colon cancerous bowel obstruction (CBO) group and adhesive bowel obstruction (ABO) control group. Used MestReNova software to extract the two sets of spectra bins, and used the MetaboAnalyst5.0 website to perform partial least square discrimination (PLS-DA), combining the human metabolome database (HMDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to find possible different Metabolites and related metabolic pathways. RESULTS: 22 patients were classified as CBO group and 30 were classified as ABO control group. Compared with ABO group, the level of Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicyluric acid, Ferulic acid, Kynurenic acid, CDP, Mandelic acid, NADPH, FAD, Phenylpyruvate, Allyl isothiocyanate, and Vanillylmandelic acid increased in the CBO group; while the lecel of L-Tryptophan and Bilirubin decreased. There were significant differences between two groups in the tryptophan metabolism, tyrosine metabolism, glutathione metabolism, phenylalanine metabolism and synthesis pathways of phenylalanine, tyrosine and tryptophan (all P<0.05). Tryptophan metabolism pathway had the greatest impact (Impact = 0.19). The early diagnosis model of colon cancerous bowel was established based on the levels of six metabolites: Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicylic acid, Ferulic acid and Kynurenic acid (R2 = 0.995, Q2 = 0.931, RMSE = 0.239, AUC = 0.962). CONCLUSION: This study firstly used serum to determine the difference in metabolome between patients with colon cancerous bowel obstruction and those with adhesive bowel obstruction. The study found that the metabolic information carried by the serum was sufficient to discriminate the two groups of patients and provided the theoretical supporting for the future using of the more convenient sample for the differential diagnosis of patients with colon cancerous bowel obstruction. Quantitative experiments on a large number of samples were still needed in the future.


Assuntos
Ácido 3-Hidroxiantranílico , Triptofano , Biomarcadores , Colo , Diagnóstico Precoce , Humanos , Ácido Cinurênico , Metaboloma , Metabolômica/métodos , Fenilalanina , Espectroscopia de Prótons por Ressonância Magnética/métodos , Tirosina
7.
Sci Total Environ ; 850: 157772, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934030

RESUMO

As global pollution, microplastics pollution has aroused growing concerns. In our experiment, the effect of microplastics acute exposure on the liver of swordtail fish was investigated by using LC-MS metabolomics. Fishes treated with high concentration polystyrene microspheres (1 µm) for 72 h were divided into three concentration groups: (A) no microplastics, (B): 1 × 106 microspheres L-1, (C): 1 × 107 microspheres L-1. Metabolomic analysis indicated that exposure to microplastics caused alterations of metabolic profiles in swordtail fish, including 37 differential metabolites were identified in B vs. A, screened out ten significant metabolites, which involved 14 metabolic pathways. One hundred three differential metabolites were identified in C vs. A, screened out 16 significant metabolites, which involved 30 metabolic pathways. Six significant metabolites were overlapping in group B vs. A and C vs. A; they are 3-hydroxyanthranilic acid, l-histidine, citrulline, linoleic acid, pantothenate, and xanthine. In addition, four metabolic pathways are overlapping in group B vs. A and C vs. A; they are beta-alanine metabolism, biosynthesis of amino acids, linoleic acid metabolism, and aminoacyl-tRNA biosynthesis. These differential metabolites were involved in oxidative stress, immune function, energy metabolism, sugar metabolism, lipid metabolism, molecule transport, and weakened feed utilization, growth performance, nutrient metabolism, and animal growth. Furthermore, we found that the number of interfered amino acids and microplastics showed a dose-effect. In summary, great attention should be paid to the potential impact of microplastics on aquatic organisms.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Animais , Cromatografia Líquida , Citrulina/metabolismo , Citrulina/farmacologia , Ciprinodontiformes/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Fígado/metabolismo , Metabolômica , Microplásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Açúcares/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia
8.
Biosci Trends ; 16(4): 249-256, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36002303

RESUMO

By far, no revolutionary breakthrough in the treatment of Parkinson's disease (PD) was found. It is indeed a knotty problem to select a satisfactory strategy for treating some patients with advanced stage PD. Development of novel therapeutic targets against PD has been an urgent task faced by global PD researchers. Targets in the tryptophan-kynurenine pathway (KP) were then considered. Metabolites in the KP are liposoluble. Some neurotoxic metabolites, including 3-hydroxykynurenine and its downstream 3-hydroxyanthranilic acid and quinolinic acid, are mainly produced peripherally. They can easily cross the blood-brain barrier (BBB) and exert their neurotoxic effects in the central neuron system (CNS), which is considered as a potential pathophysiological mechanism of neurodegenerative diseases. Hence, agents against the targets in the KP have two characteristics: (1) being independent from the dopaminergic system and (2) being seldom affected by the BBB. Inspiringly, one agent, namely, the inhibitor of indoleamine 2,3-dioxygenase 1, has been currently reported to present satisfactory efficacy comparable to levodopa, implying that the KP might be a potential novel target for PD. This review collected and summarized the updated information regarding the association of the KP with PD, which is helpful for understanding the clinical value of the KP in the PD scenario.


Assuntos
Cinurenina , Doença de Parkinson , Ácido 3-Hidroxiantranílico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Levodopa , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ácido Quinolínico/metabolismo , Triptofano/metabolismo
9.
J Pharm Biomed Anal ; 219: 114948, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35907317

RESUMO

Herein it is reported the development and application of two chromatographic assays for the measurement of the activity of 3-Hydroxyanthranilate-3,4-dioxygenase (3HAO). Such an enzyme converts 3-Hydroxyanthranilic acid (3HAA) to 2-amino-3-carboxymuconic semialdehyde (ACMS), which undergo a spontaneous, non-enzymatic cyclization to produce quinolinic acid (QUIN). The enzyme activity was measured by quantitation of the substrate consumption over time either with spectrophotometric (UV) or mass spectrometric (MS) detection upon reversed-phase chromatographic separation. MS detection resulted more selective and sensitive, but less accurate and precise. However, both methods have sufficient sensitivity to allow the measurement of enzyme activity with consistent results compared to literature data. Since MS detection allowed less sample consumption it was used to calculate the kinetics parameters (i.e., Vmax and Kd) of recombinant 3HAO. Another MS-based method was then developed to measure the amount of QUIN produced, revealing an incomplete conversion of 3HAA to QUIN. As suggested by previous studies, the enzyme activity was apparently sensitive to the redox state of the enzyme thiols. In fact, thiol reducing agents such as dithiothreitol (DTT) and glutathione (GSH), can alter the enzyme activity although the investigation on the exact mechanism involved in such effect was beyond the scope of the research. Interestingly, edaravone (EDA) induced an in vitro suppression of QUIN production through direct, competitive 3HAO inhibition. EDA is a molecule approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with an increase of QUIN concentrations in both serum and cerebrospinal fluid. Although EDA was reported to mitigate ALS progression its mode of action is still largely unknown. Some studies reported antioxidant and radical scavenger properties of EDA, but none confirm a direct activity as 3HAO enzyme inhibitor. Since QUIN is reported to be a neurotoxic metabolite, 3HAO inhibition can contribute to the beneficial effect of EDA in ALS, although such a mechanism must be then confirmed in vivo. However, EDA might be a convenient scaffold for the design of selective 3HAO inhibitors with potential applications in ALS treatment.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , 3-Hidroxiantranilato 3,4-Dioxigenase/química , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Edaravone/farmacologia , Humanos , Ácido Quinolínico/metabolismo
10.
Food Res Int ; 158: 111575, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840260

RESUMO

After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.


Assuntos
Alimentos Fermentados , Isoflavonas , Ácido 3-Hidroxiantranílico , Antioxidantes/farmacologia , Peptídeos , /química
11.
Neurobiol Dis ; 171: 105783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675895

RESUMO

Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-ß and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Ácido 3-Hidroxiantranílico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Austrália , Biomarcadores , Disfunção Cognitiva/líquido cefalorraquidiano , Estudos Transversais , Progressão da Doença , Humanos , Cinurenina , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
13.
J Pathol ; 256(3): 256-261, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859884

RESUMO

COVID-19 is a pandemic with high morbidity and mortality. In an autopsy cohort of COVID-19 patients, we found extensive accumulation of the tryptophan degradation products 3-hydroxy-anthranilic acid and quinolinic acid in the lungs, heart, and brain. This was not related to the expression of the tryptophan-catabolizing indoleamine 2,3-dioxygenase (IDO)-1, but rather to that of its isoform IDO-2, which otherwise is expressed rarely. Bioavailability of tryptophan is an absolute requirement for proper cell functioning and synthesis of hormones, whereas its degradation products can cause cell death. Markers of apoptosis and severe cellular stress were associated with IDO-2 expression in large areas of lung and heart tissue, whereas affected areas in brain were more restricted. Analyses of tissue, cerebrospinal fluid, and sequential plasma samples indicate early initiation of the kynurenine/aryl-hydrocarbon receptor/IDO-2 axis as a positive feedback loop, potentially leading to severe COVID-19 pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Encéfalo/enzimologia , COVID-19/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Pulmão/enzimologia , Miocárdio/enzimologia , Ácido 3-Hidroxiantranílico/análise , Adulto , Idoso , Apoptose , Autopsia , Encéfalo/patologia , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Humanos , Cinurenina/análise , Pulmão/patologia , Pessoa de Meia-Idade , Miocárdio/patologia , Estudos Prospectivos , Ácido Quinolínico/análise , Índice de Gravidade de Doença , Triptofano/análise
14.
Crit Rev Food Sci Nutr ; 62(31): 8793-8811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085885

RESUMO

Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.


Assuntos
Cinurenina , Triptofano , Cinurenina/metabolismo , Ácido 3-Hidroxiantranílico , Dieta , Indóis
15.
J Hematol Oncol ; 14(1): 153, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563230

RESUMO

The 3-hydroxyanthranilic acid (3-HAA), a derivative of kynurenine, was reported to suppress tumor growth. However, the function of 3-HAA largely remains unclear. Here, we report that 3-hydroxyanthranilic acid (3-HAA) is lower in tumor cells, while adding exogenous 3-HAA induces apoptosis in hepatocellular carcinoma by binding YY1. This 3-HAA binding of YY1 leads to phosphorylation of YY1 at the Thr 398 by PKCζ, concomitantly enhances YY1 chromatin binding activity to increase expression of target genes. These findings demonstrate that 3-HAA is a ligand of YY1, suggesting it is a promising therapeutic candidate for HCC.


Assuntos
Ácido 3-Hidroxiantranílico/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Cinurenina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição YY1/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Cinurenina/farmacologia , Ligantes , Neoplasias Hepáticas/metabolismo
16.
Diabetologia ; 64(11): 2445-2457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34409496

RESUMO

AIMS/HYPOTHESIS: Studies investigating associations between kynurenines and cognitive function have generally been small, restricted to clinical samples or have found inconsistent results, and associations in the general adult population, and in individuals with type 2 diabetes in particular, are not clear. Therefore, the aim of the present study was to investigate cross-sectional associations between plasma kynurenines and cognitive function in a cohort of middle-aged participants with normal glucose metabolism, prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes. METHODS: Plasma kynurenines were quantified in 2358 participants aged 61 ± 8 years. Cross-sectional associations of kynurenines with cognitive impairment and cognitive domain scores were investigated using logistic, multiple linear and restricted cubic spline regression analyses adjusted for several confounders. RESULTS: Effect modification by glucose metabolism status was found for several associations with cognitive impairment, hence analyses were stratified. In individuals with prediabetes, 3-hydroxykynurenine (OR per SD 0.59 [95% CI 0.37, 0.94]) and 3-hydroxyanthranilic acid (0.67 [0.47, 0.96]) were associated with lower odds of cognitive impairment after full adjustment. In individuals with type 2 diabetes, kynurenine (0.80 [0.66, 0.98]), 3-hydroxykynurenine (0.82 [0.68, 0.99]), kynurenic acid (0.81 [0.68, 0.96]), xanthurenic acid (0.73 [0.61, 0.87]) and 3-hydroxyanthranilic acid (0.73 [0.60, 0.87]) were all associated with lower odds of cognitive impairment. Kynurenic acid (ß per SD 0.07 [95% CI 0.02, 0.13]) and xanthurenic acid (0.06 [0.01, 0.11]) were also associated with better executive function/attention. No associations were observed in individuals with normal glucose metabolism. CONCLUSIONS/INTERPRETATION: Several kynurenines were cross-sectionally associated with lower odds of cognitive impairment and better cognitive functioning in type 2 diabetes, while less widespread associations were seen in prediabetes. Low levels of kynurenines might be involved in the pathway of type 2 diabetes and cognitive decline but this needs further studies.


Assuntos
Glicemia/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/sangue , Diabetes Mellitus Tipo 2/sangue , Cinurenina/análogos & derivados , Estado Pré-Diabético/sangue , Ácido 3-Hidroxiantranílico/metabolismo , Idoso , Biomarcadores/sangue , Disfunção Cognitiva/fisiopatologia , Estudos Transversais , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Cinurenina/sangue , Masculino , Pessoa de Meia-Idade
17.
Sci Rep ; 11(1): 16451, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385485

RESUMO

Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic ß-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Pseudomonas chlororaphis/genética , Ácido 3-Hidroxiantranílico/química , Meios de Cultura , Fermentação , Compostos Férricos/metabolismo , Técnicas de Silenciamento de Genes , Genes Bacterianos , Genes Reguladores , Fenazinas/metabolismo
18.
Neuroreport ; 32(6): 415-422, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788810

RESUMO

BACKGROUND: To identify the potent metabolic biomarkers and time of injury of traumatic brain injured (TBI). METHODS: A total of 70 Sprague-Dawley rats were used to establish the TBI model in this study. The serum was collected at 3 h, 6 h, 12 h, 24 h, 3 days and 7 days after surgery. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was performed to analyze metabolic changes in the serum of the TBI rats from different groups. The differences between the metabolic profiles of the rats in seven groups were analyzed using partial least squares discriminant analysis. RESULTS: Metabolic profiling revealed significant differences between the sham-operated and other groups. A total of 49 potential TBI metabolite biomarkers were identified between the sham-operated group and the model groups at different time points. Among them, six metabolites (methionine sulfone, kynurenine, 3-hydroxyanthranilic acid, 3-Indolepropionic acid, citric acid and glycocholic acid) were identified as biomarkers of TBI to estimate the injury time. CONCLUSION: Using metabolomic analysis, we identified new TBI serum biomarkers for accurate detection and determination of the timing of TBI injury.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Lesões Encefálicas Traumáticas/sangue , Ácido Cítrico/sangue , Ácido Glicocólico/sangue , Indóis/sangue , Cinurenina/sangue , Metionina/análogos & derivados , Propionatos/sangue , Animais , Lesões Encefálicas Traumáticas/metabolismo , Cromatografia Líquida , Masculino , Espectrometria de Massas , Metaboloma , Metabolômica , Metionina/sangue , Ratos , Ratos Sprague-Dawley
19.
Clin. transl. oncol. (Print) ; 23(2): 418-423, feb. 2021. graf
Artigo em Inglês | IBECS | ID: ibc-220627

RESUMO

Purpose Tryptophan metabolites have immunomodulatory functions, suggesting possible roles in cancer immunity. Methods Plasma tryptophan metabolites were measured using liquid chromatography/mass spectrometry before immune checkpoint inhibitors (ICIs) in patients with non-small cell lung cancer (NSCLC). Results The 19 patients with NSCLC had significantly lower levels of tryptophan (p = 0.002) and xanthurenic acid (p = 0.032), and a significantly higher level of 3-hydroxyanthranilic acid (3-HAA) (p = 0.028) compared with the 10 healthy volunteers. The patients achieving objective responses had significantly lower levels of 3-HAA than those who did not (p = 0.045). Receiver operating characteristic analyses determined that the cutoff value of 3-HAA for objective response was 35.4 pmol/mL (sensitivity: 87.5% and specificity: 83.3%). The patients with 3-HAA < 35.4 pmol/mL had significantly longer median progression-free survival (7.0 months) than those without (1.6 months, p = 0.022). Conclusions Tryptophan metabolites may have a potential for predicting the efficacy of ICIs (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ácido 3-Hidroxiantranílico/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Triptofano/sangue , Xanturenatos/sangue , Biomarcadores Tumorais/análise , Intervalo Livre de Doença , Estudos Prospectivos , Curva ROC , Resultado do Tratamento
20.
Biochem Biophys Res Commun ; 543: 8-14, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493986

RESUMO

Paulomycins (PAUs) refer to a group of glycosylated antibiotics with attractive antibacterial activities against Gram-positive bacteria. They contain a special ring A moiety that is prone to dehydrate between C-4 and C-5 to a quinone-type form at acidic condition, which will reduce the antibacterial activities of PAUs significantly. Elucidation of the biosynthetic mechanism of the ring A moiety may facilitate its structure modifications by combinatorial biosynthesis to generate PAU analogues with enhanced bioactivity or stability. Previous studies showed that the ring A moiety is derived from chorismate, which is converted to 3-hydroxyanthranilic acid (3-HAA) by a 2-amino-2-deoxyisochorismate (ADIC) synthase, a 2,3-dihydro-3-hydroxyanthranilic acid (DHHA) synthase, and a DHHA dehydrogenase. Unfortunately, little is known about the conversion process from 3-HAA to the highly decorated ring A moiety of PAUs. In this work, we characterized Pau17 as an unprecedented 3-HAA 6-hydroxylase responsible for the conversion of 3-HAA to 3,6-DHAA by in vivo and in vitro studies, pushing one step forward toward elucidating the biosynthetic mechanism of the ring A moiety of PAUs.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Antibacterianos/biossíntese , Cicloexenos/metabolismo , Dissacarídeos/biossíntese , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia , Ácido 3-Hidroxiantranílico/química , Antibacterianos/química , Antibacterianos/farmacologia , Cicloexenos/química , Cicloexenos/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Oxigenases de Função Mista/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Streptomyces/química , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...